If it's not what You are looking for type in the equation solver your own equation and let us solve it.
33+3z^2=180
We move all terms to the left:
33+3z^2-(180)=0
We add all the numbers together, and all the variables
3z^2-147=0
a = 3; b = 0; c = -147;
Δ = b2-4ac
Δ = 02-4·3·(-147)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*3}=\frac{-42}{6} =-7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*3}=\frac{42}{6} =7 $
| 12x+22-10x=10+4 | | 2(j-4.8)=5.2 | | .3(9k+12)=15 | | 4x+3.6=7.8 | | X^2-7x=23 | | 2x.x^2=143 | | (7x+34)=(9x+22)=180 | | -8=k+6 | | 5(2x+1)+4(3x-5)=2(3-4x) | | 3n^2+24n=-48 | | 17x-28=9x+44. | | 8+x.2=-12 | | 6x=30=120 | | 14=3r | | 1.2x-4.8=3.6 | | -9/r=12 | | 6)25x+50=100 | | X+3(x)+20=180 | | 3/10x=3/5 | | 4=-4(b-16) | | 5(2p-3)=10 | | 3(n-45)=78 | | G(×)=3x | | y/9+46=54 | | 8x−2=−58 | | -7(d+28)=-21 | | 15+5j=65 | | w/6-40=-32 | | 3m-2-2m=7+5m-3 | | 2x–4=28,x= | | v/2+3=1 | | 12x+40=64 |